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Introduction
• The problem of  computing marginal statistics of probability 
distributions defined over graphs with cycles occurs in many 
fields: communications, statistical physics, AI,…

• Discuss the role spatial mixing has in analyzing the Sum-
Product (SP) algorithm and in clustering in combinatorial 
optimization. 

- We present a framework for analyzing the convergence
and accuracy of the SP algorithm based on uniqueness
of Gibbs measures.  

- We show clustering in combinatorial optimization is a 
consequence of non-uniqueness of Gibbs measures. 

Most of what I will say is obvious to the physicists….
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Gibbs Measures
A

E D

C
B

• Gibbs measure on graph G = (V, E): 

P(xA,...,xE) = Z-1 ∏Λ φΛ(xΛ)

- Assume finite alphabets: Σ
- Potentials: Φ = { φΛ }, e.g. φ{A, C, E} , φ{A, C}
- Bounded and nonnegative, can take value zero (hardcore)

• Gibbs measures are Markov random fields (Hammersley-
Clifford Theorem)
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Factor Graphs
xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

• P(xA, xB, xC, xD, xE, xF) =

Z-1 φ1(xA, xB, xC) × φ2(xA, xD, xE) × φ3(xB, xD, xF) × φ4(xC, xE, xF)

• Markov random field property still holds

• Typical goal: compute marginal at each node.
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Example: Constraint Satisfaction 
Problems (CSP)

xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

• Each φi: x∂i → {0,1},   xa ∈ Σ

- e.g.: coloring, independent set, k-sat

• SAT = { xV such that φi(x∂i) = 1 }

• Goals:  
- find a solution
- count total number of solutions   
- understand structure of SAT 

• Interested in large factor graphs
• Hope to gain qualitative understanding 
by looking at the “infinite limit”
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Infinite CSP

xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

• For each finite Λ ⊂ V consider sub-
factor graph GΛ with variables Λ and 
factors { φi : ∂i ⊂ Λ } 

- e.g. Λ = {a, b, c} contains only φ1

• If G is SAT then each GΛ is also SAT

•Compactness Principle: If each GΛ is 
SAT then G is SAT.  (Ramsey Theory, 
Graham, Rothschild, Spencer)

• Alternatively, if G is not SAT then there 
exists a finite Λ such that GΛ is not SAT 
(i.e. there is a local reason for failure)
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Gibbs Measures on Infinite Graphs
• Hope to gain qualitative understanding by looking at the 
“infinite limit.”

• Let (V, E) be an infinite graph with local potentials Φ.
(Can also define it on infinite factor graph.)

• We describe the Gibbs measure in terms of conditioning.
Define the specification for the finite subset Λ in V:

γΛ( xΛ | x∂Λ) = ZΛ
-1(x∂Λ) { ZΛ(x∂Λ) ≠ 0 } ∏ΓΛ ≠ ∅φΓ(xΓ)

Conditional partition function: ZΛ(x∂Λ) = ∑xΛ
∏φΓ(xΓ):

- have to be careful with zeros 
Γ

Λ Γ
Γ

Γ
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Gibbs Measures on Infinite Graphs 
• Let the set of all Gibbs measures be 

G(Φ) = { µ :  µ(dxΛ | x∂Λ)  = γΛ (dxΛ| x∂Λ)  µ-a.s.  ∀ Λ }.

• If ∃ Λn ↑ V such that ∃ x∂Λ for which ZΛ (x∂Λ ) > 0
n n n

then G(Φ) is nonempty. (Condition equivalent to that in 
Compactness principle, each finite GΛ is SAT.)  It contains 
all measures that are locally consistent with the 
specification.  

• There can exist many Gibbs measures.  (Possibility of  
multiple phases.)

May 1, 2007 Sekhar Tatikonda 11



Subsequential Limits and G(Φ)

Λ1

Λ2

x∂Λ2
x∂Λ1

• Proposition: Fix a growing sequence { Λn } and valid { x∂Λn
} 

Consider the sequence:  γ
Λn

(dxΛn
| x∂Λn

)

Each subsequential limit of this sequence belongs to G(Φ). 

• The set G(Φ) is convex.  Hence there exists either a unique 
Gibbs measure or an infinite number of Gibbs measures that 
are locally consistent.
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Unique Gibbs Measures and Strong Mixing

Λ1
Α

Λ2

x∂Λ2
x∂Λ1

Proposition: Assume positive potentials.  The infinite Gibbs 
measure is unique if and only if the convergence rate is uniform over 
all initializing messages:

limΛ↑V maxx∂Λ, y∂Λ
| γΛ( A | x∂Λ) - γΛ(A | y∂Λ) |  = 0   ∀ cylinder sets A
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Issue of Zeros
• Hardcore zeros can be difficult to treat.  For example 
consider:

{0,1} valued variables, equality factors.  Only two valid 
realizations → long range dependence.

• Let Λ = { b, f }, ∂Λ = {a, c, e, g}
then ZΛ(xa=xc=0, xe=xg=1) > 0

But now let ∆ = { b, c, e, f }, ∂∆ = {a, d, g}
then Z∆(xa = xg = 1, xd = 0) = 0 

• In the former, problems with the “outside.” In the latter, 
problems with the “inside.”

ba edc f g
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Unique Gibbs Measures and Strong Mixing
(From before:) Proposition: Assume positive potentials.  The 
infinite Gibbs measure is unique if and only if the convergence rate is 
uniform over all initializing messages:

limΛ↑V max | γΛ( A | x∂Λ) - γΛ(A | y∂Λ ) |  = 0   ∀ cylinder sets A

• Continues to hold with zeroes:  
limΛ V maxx∂Λ, y∂Λ

| γΛ(A | x∂Λ) – γΛ(A | y∂Λ) | = 0  ∀ cylinder sets A↑

where max over “satisfying boundaries”

• Unconstrained max, might have ZΛ(x∂Λ) = 0.
Hard to deal with “outside” but sometimes easy
to deal with “inside.” Example: independent set,   
ZΛ(x∂Λ) > 0  for large enough Λ
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Many Uniqueness Conditions
• Short summary of some of the conditions: 

- Dobrushin: small Influence on any site 

- Dobrushin-Shlosman: small Influence of any site.  

- Weitz, et.al.: small Influence on any site and of any site.  
Based on an intelligent use of weights and a coupling 
argument as opposed to an analytic contraction argument.

- S. Winkler (thesis): small influence on 
any site (integrating out neighbors)

Xi

Xj
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Loopy Sum-Product Algorithm
xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

• Purely local algorithm

• Initialize messages:

m0
x→φ(x), m0

φ→x(x) 

• If uniform then so-called “free boundary”

• Algorithm is exact on finite trees (Pearl)

• Variable to factor:
mn+1

x→φ(x) = η ∏ψ ∈ ∂x\φ mn
ψ→x(x)

• Factor to variable:
mn+1

φ→x(x) = η ∑ φ ∏y ∈ ∂φ\x mn
y→φ(y)

• Belief: 
bn

x(x) = η ∏φ ∈ ∂x mn
φ→x(x)
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Fixed Point Equations
xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

• Variable to factor:

mx→φ(x) = η ∏ψ ∈ ∂x\φ mψ→x(x)

• Factor to variable:

mφ→x(x) = η ∑ φ ∏y ∈ ∂φ\x my→φ(y)
• Belief: 

bx(x) = η ∏φ ∈ ∂x mφ→x(x)

Questions:
• Does SP converge?
• If so how fast? How good is the approximation?
• What problem is "loopy" SP really solving?
• If it doesn’t converge what is the failure mode?
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Computation Tree
xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

xD

xA

φ1

φ4

φ2

xCxB xD xE

φ3φ4φ3

xF xFxE xB xF xC xF

• n iterations of loopy SP corresponds to exact SP on depth n 
computation tree.
• Let µn be the measure defined on the computation tree of 
depth n (with appropriate initialization.)
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Subsequential Limits and G(Φ)
xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

xD

xA

φ1

φ4

φ2

xCxB xD xE

φ3φ4φ3

xF xFxE xB xF xC xF

• Proposition: Each subsequential limit of the sequence of
measures µn belongs to G(Φ).  (This holds for any initializing 
messages.)

• The set G(Φ) is convex. If SP oscillates then it is oscillating 
between different extremal measures defined on the tree.
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SP Convergence iff Weak Convergence

xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

xD

xA

φ1

φ4

φ2

xCxB xD xE

φ3φ4φ3

xF xFxE xB xF xC xF

• Proposition [TatJordan02]: SP converges if and only if the 
sequence of measures µn converges weakly.  Specifically 
µn(dxTn

) → µ(dxTn
) for each tree Tn. In addition, a sufficient 

condition for convergence is uniqueness of the Gibbs measure 
on the infinite tree.  (Only sufficient due to “periodic” boundary.)
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What is the Computation?

• Dobrushin's uniqueness condition:  
supA ∑B ∈ V CA,B(Φ) < 1

• If A and B are not connected by a 
factor then CA,B(Φ) = 0. 

xA φ1

xB

xC
φ2

xD φ3

xE

φ4xF

CA,B(Φ) = supxB, yB, xV\{A,B} || γ{A}(dxA | xB, xV\{A,B}) - γ{A}(dxA | yB, xV\{A, B})|| 

• This is the same on the factor graph or  the computation tree. 
Hence need only compute: maxA ∑B ∈ ∂A CA,B(Φ)

• For finite alphabets computing CA,B(Φ) is straightforward.  
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Rate of Convergence and Error Bars
• Let β =  maxA ∑B ∈ ∂A CA,B(Φ) 

• Proposition [Tat03]:  If β < 1 then || µn(dxA) - µ(dxA) || ≤ c en lnβ

(independent of initial messages)

• The girth is the number of edges in the shortest cycle in a 
factor graph. If girth is 2M then M-variable hop neighborhood in 
factor graph is the same as the depth M computation tree.  
Corresponds to local tree-like property.

• Proposition [Tat03]:  If the girth is 2M and β < 1 then
|| P(dxA) - µ(dxA) || ≤ c e M lnβ

• Currently a lot activity determining conditions for decay of 
correlations
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Infinite Original Factor Graph
• Before original factor graph was finite.  If there are cycles then 
corresponding computation tree factor graph is infinite.

• Now reconsider the case when the original factor graph is 
infinite. 
- countable number of variable and factor nodes
- assume well-posed (i.e. there exists a limiting procedure
for constructing it)

• Usually randomly drawn from an ensemble

• Corresponding to the infinite original factor graph G there is an 
infinite computation tree GT

• Examine non-uniqueness of Gibbs measures on original factor 
graph G
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Constraint Satisfaction Problems

• Consider infinite factor graph with factors of the form:

- φΓ(xΓ) ∈ {0,1}   Γ of some bounded size and xV ∈ ΣV

- Let SAT = {xV such that φΓ(xΓ) = 1   ∀ Γ } 
- k-SAT:  φ123(x1, x2, x3) = { x1 or x2

c or x3 = True}
- coloring:  φe(xe) = {endpoints have ≠ colors}

- Assume SAT not empty.  
(Note: measurable set, countable intersection)

 
- Need to understand structure of SAT.  
- To do this consider structure of G(Φ).  Note µ(SAT) = 1
∀µ ∈ G(Φ)
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Clustering of SAT

•Empirical evidence
•Theoretical evidence (representative list):  
- Achlioptas and Ricci-Tersenghi: moment methods for k-SAT
- Mora and Mezard: XORSAT
- Mora, Mezard, and Zecchina: moment methods for k-SAT
- Mezard and Montanari: “entropy” counting methods

Easy SAT No SATHard SAT α= factors / 
variables
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Clustering of SAT – Part 2

•For 3-SAT:
- αc = 4.26 empirical
- 3.42 < αc < 4.51 rigorous
- αd = 3.9 empirical

• Open question: limN →∞ αc(N) exists?  (Known to hold for 
large k:  αc = 2k log 2, Achlioptas and Peres)

Easy SAT No SATHard SAT α= factors / 
variablesαd αc

May 1, 2007 Sekhar Tatikonda 29



Extremal Decomposition
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• Goal: relate clusters to extremal measures.
• The set G(Φ) is convex.  The extreme points, 
Gex(Φ), represent measures that are tail trivial 
(i.e. measures that are mixing.)  

• T = ∩Λ FΛc.  Intuitively a tail event A ∈ T contains 
its “finite flips:” If x ∈ A then (xΛc, yΛ ) ∈ A ∀ yΛ ∈ {0,1}Λ

• Tail events are weird:  e.g. A = {finite 0’s}, Ac = { ∞ 0’s}

• Extremal decomposition:
- If µ ∈ Gex(Φ) then µ(A) ∈ {0,1}   ∀ A ∈ T
- If µ, ν ∈ Gex(Φ) then ∃ A ∈ T such that µ(A) = ν(Ac) = 1
- Each µ ∈ G(Φ) is uniquely determined by its behavior on T

G(Φ)



Clustering of SAT – Part 3

•What is distance? x ∼ y if dH(x, y) < ∞
•Clusters are connected components of SAT with respect to ∼
• If S1, S2 ⊂ SAT are distinct clusters then dH(S1, S2) = ∞
•Note that if A1, A2 ∈ T and A1 ∩ A2 = ∅ then dH(A1, A2) = ∞

Easy SAT No SATHard SAT α= factors / 
variables

→ Idea: Relate clusters to tail events (macroscopic observations.)
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Clustering and Uniqueness
•If non-unique Gibbs measure then SAT splits into at least two 
infinitely separated regions.  Thus there is more than one cluster.

•Proposition: If |G(Φ)| > 1 then ∃ partition of SAT = S1 ∪ S2, 
such that dH(S1, S2) = ∞. Alternatively, if ∃ µ ∈ G(Φ) and ∃ partition 
SAT = S1 ∪ S2 such that µ(S1), µ(S2) > 0 and dH(S1, S2) = ∞ then 
|G(Φ)| > 1.

Pf: For µ1, µ2 ∈ Gex(Φ)  ∃ A ∈ T such that µ1(A) = µ2(Ac) = 1.  
Let S1 = SAT ∩ A, S2 = SAT ∩ Ac.  Now dH(A, Ac) = ∞ thus 
dH(S1, S2) = ∞.   For other direction, let 

µ1( · ) = µ( · | S1)  and  µ2( · ) = µ( · | S2). 
One can show µ1, µ2 ∈ G(Φ) and µ1 ≠ µ2.

• Said another way: | G(Φ) | = 1 iff SAT consists of one cluster. 
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Clustering and Uniqueness – Part 2

• Assume Gex(Φ) is countable.  

• Proposition: There is a 1-1 map between Gex(Φ) and 
the clusters of SAT.

• Sketch of proof:  If ∃ µ ∈ G(Φ) and S is a cluster such 
that µ(S) > 0 then µ( · | S) ∈ Gex(Φ).  (One can identify 
with each cluster an extremal measure.)

If µ ∈ Gex(Φ) then ∃ A ∈ T such that µ(A) = ν(Ac) = 1 ∀ ν
∈ Gex(Φ) \ µ.  The set A ∩ SAT is a cluster.  (With 
countablity, one can identify each extremal measure 
with a cluster.)
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Mixing within a Cluster

• Proposition: If µ ∈ Gex(Φ) then for any cylinder set A:  
lim Λ ↑ V | γΛ( A | x∂Λ ) - µ(A) | = 0   µ – a.s.  

• If S is a cluster with corresponding extremal measure µ then 
| µ(xi, xj) - µ(xi) µ(xj) | → 0 

as i and j are chosen farther and farther apart. 
Recall µ’s support is the cluster S.
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Relevance to Survey Propagation

• RSB hypotheses: clustering,  mixing within clusters
• αd is Gibbs uniqueness threshold and αc is Gibbs existence threshold 

• Conditioned on cluster regular SP should work.  Send “survey” of SP 
messages, i.e. a probability on probabilities.  Which probability?

• Coming back in from infinity…

Easy Sat No SatHard Sat α= factors / 
variablesαcαd
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Coming back from Infinity

• Let G=(V, E) infinite graph with local potentials Φ
• Let Λn be a growing sequence of finite subsets of V.
• Let µn be defined on Λn, use free boundary

• We know subsequential limits of µn converge to elements of 
G(Φ).  Hence µn G(Φ) (bounces around though)

• Thus, for n large, µn can be written as a mixture of the 
extremal measures in G(Φ):    µn(xΛn

) = ∫ µα(xΛn
) wn(dα)

Main difficulty:  wn is changing with n.  This phenomena is 
called “chaotic size dependence” by Newman and Stein.

G(Φ)
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Coming back from Infinity – Part 2

µα µβ

ΣΛ

• What does µn look like?  Mixture of “lumps.”

• Given this meta structure, we probably don’t want marginals
of µn.  Instead we would like marginals of an extremal measure 
in the mixture defining µn.  This is  related to idea of finding the 
address (frozen variables ) of different clusters.

• How do we understand these lumps?
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Markov Chains on ∞ Trees

• Lumps are related to extremal measures.  
On infinite trees we have a characterization 
of them in terms of boundary laws.

• Markov chain:  µ(xb | xa, xpast) = µ( xb | xa)

• All MCs are characterized by boundary laws:

µ(xΛ∪∂Λ) = ηΛ ∏ΓΛ≠∅ φΓ ∏b∈∂Λ lba(xb)

• Recursion:  lba(xb) = η ∏c∈ ∂b\a ∑ xc
φcb lcb(xc)   

(pairwise)

xa

xb

Λ
xa

xb

xb

xa

xc

xc xc



Markov Chains on ∞ Trees – Part 2

• All extremal measures are MCs.  

• There are 3 situations for µ ∈ G(Φ):
- G(Φ) is unique.  Hence µ is a MC. 
- µ is a MC and is a convex combination of MCs 
(can happen  if one boundary law is uniform)
- µ is not a MC but is a convex combination of MCs

• Proposition: [TatJordan02] There is a 1-1 map between MCs 
and solutions to the SP fixed point equations.  
- Relate the messages mx→φ, mφ→x to the boundary laws lba
- Recall recursion: lba(xb) = η ∏c∈∂b\a ∑ xc

φcb lcb(xc)  
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Survey Propagation?
• Survey propagation: probability on probabilities.
• µn is a mixture of MCs with mixture measure wn.  
Use wn to define a probability over boundary laws:

µ(xΛ∪∂Λ) = η ∫ ∏ΓΛ≠∅ φΛ ∏b∈∂Λ lαba(xb) w(dα) 

• By the recursion for the boundary law we can get a recursion 
for the probabilities of the laws:

wn(dlba) = ∫ {lba = η ∏c∈∂b\a  ∑xc φcblcb(xc) } wn(dlcb c∈∂b\a)

• If we use product measure we get  something like 
survey propagation.

• Problems: Can we learn wn? Graphs with cycles (large girth)? 

xb

xa

xc

xc xc
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Summary

• Discussed infinite Gibbs measures and loopy SP. 
[Tatikonda, Jordan; UAI ‘02] [Tatikonda; ITW ‘03]

• Discussed relation between clustering & mixing  and the 
problem of non-unique Gibbs measures for a class of constraint 
satisfaction problems.  [Tatikonda; Allerton ‘06]

Thank You!

More info: http://www.pantheon.yale.edu/~sct29
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